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There is considered the problem of bifurcation of the self-oscillations from 
the equilibrium state for nonlinear differential equations of hyperbolic type. 

A general qualitative analysis is performed and formulas are presented to 

compute the parameters of periodic solutions. 
LOSS ofstability occurs in many nonconservative problems of elastic stability 

theory (see [l, 3 1, for instance) because the pair of complex-conjugate eig- 
envalues belonging to the stability spectrum of the linearized problem inter- 
sects the imaginary axis under changes in some parameters and goes over into 
the right half-plane of the complex plane. In this case, the analysis of the 

appropriate mechanical problem in a nonlinear formulation will permit clari- 
fication of the soft or hard nature of loss of stability. One of the best known 
of such problems is nonlinear “panel flutter” at supersonic speeds, which is 
simulated by using the law of plane sections [4]. The mathematical methods 
used in this latter problem reduce to the replacement of the nonlinear partial 

differential equations by their Galerkin approximations with subsequent app- 

lication of the method of a small parameter of the harmonic balance method. 
As has been shown in [ 5 1, the results obtained by this means are often far 

from the correct one . 
A strict method of investigating appropriate nonlinear partial differential 

equations is proposed below. The mathematical apparatus to be used here is 

a combination of the method of integral manifolds and a method developed 
in [ 6 1. The method of integral manifolds is not applicable here in pure form. 
This is related to the specific hyperbolic- type equations for which the pro - 
perties of the solutions cannot assure the necessary smoothness of the invariant 

surface [ 7 1. Let us note that the problem being solved below has actually 

been solved by V . V . Bolotin (see [ 11, p. 333 ) . 

1. Description of the class of differential equations under 
consideration. Below, E is a real Banach space, Rm is e Euclidean m--space. We 
consider in E the equation 

L’* + A (E) X’ + [R” + c (E)]X -I f (.L t’; &, /k) (1.1) 

dependent on a numerical parameter E and a vector parameter p, E R". It is later as - 
sumed that 

I t: 1 < EIJ, II P Ilp d PO (1.2) 

where a0 and lro are sufficiently small. Let us write the constraints imposed on the co- 
efficients of (1.1) , We first examine those which refer to the linear part 
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z” + A (e) x’ + [B2 -t- C (e)] x = 0 (1.3 1 

We shall assume that B is a closed, linear * unbounded optrator with domain of 
definition D (B) compact in E ) and iB , the generating operator of the group of 
class (C,) in the complex expansion of E and B has a continuous inverse B-1 in 

&. We shall later assume that 11 C (c)B-l llg < const and the operators C (&)B-l 
and A (E)depend analytically on a in the metric of linear operators acting from E into E. 
This latter constraint concerning (1.3 ) is the following. Weintroduce the quadratic sheaf 

L (A; E) = A21 + 3Ld (E) + B2 + c (E) (1.4) 

into the considerations, where 1 is the unit operator. We call the points of its spectrum 
the stability spectrum by considering that the nature of their arrangement governs the 

behavior of the solutions of (1.3). We shall consider that two simple eigenvalues k (E) 

= 7 (a) + icr (a), X (e) = ‘G (a) - ia (E), which evidently depend analytically on 
E and for which we consider the following conditions satisfied 

z (0) = 0, 00 = 0 (0) > 0, To’ = &IT (e) Lo # 0 

belong to it. 
With respect to the remaining points of the stability spectrum , we shall assume 

that they are located in the part of the complex plane extracted by the inequality 

Re 3L< - yo (0. 
Let us turn to a description of the constraints imposed on the right side of (1.1). To 

this end, we introduce the spaces E (B) and E (B2) which consist of the elements 
x ED (B) and 5 E D (B2) , respectively, and are normalized as follows 

II z IIEP) = II BX lb9 ll 5 llE(W = 11 B2x lb 

Let us assume that the operator j (G Y; a, /J) acts from some sphere of sufficiently 
small radius in the space E (B) x E (B) x R m+l into E and is analytic in a set of 

variables * where it has an order of smallness higher than the first in the variables x and 
y at zero. Let us assume that the Frechet derivative of j (2, .U; 6 l.L) with respect to 

yadmits of extension to a continuous Linear operator D,f (x, y; E: p) acting from 

E into E, where this extension continuously depends strongly on E and p;and satisfies 
the Lipschitz condition with the universal constant No 

II Dd @I, ~1; 8, P) - D!,f (G ~2; ~7 P) IIE-+E < 0.5 1 
No ill%- x2h) -t II?h - ?!2h3)1 

in the variables J and y belonging to some sphere of the space E (B) x E (B). 
This Latter constraint is the following. We shall assume that the operator f (2, y; 

8, p), for values of th e parameters e and p satisfying the inequalities (1.2 ) and for each 
sufficiently small 6 > 0, will allow a space ja (x, II; e, p) with the elements 

11 x kE(B) < 6, II Y IIE(B) < 6 (1.6) 

in all elements of E (B) X E (B) such that 

fb (z, Y; 8, f-4 = f 65 Y; 8, l-4 
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for z and y satisfying the inequalities (1.6 ) a that for arbitrary x and y from E (B) X 
E (B), the operator fb (x, y; 6, p) possesses all the properties of the operator f (x, 
y; 8, p) with a~ly~&it~ replaced by infinite d~fferent~abi~~ty , that the inequality 

(1.5) with a certain constant Nb commOn to a’il emements of E Wf X F: (B) is 
satisfied, and that 

ltfa(% Yl; E, CL) ---.!a (%r ga; 8, p> [IE < 

4f4 c-1 - ~ZJiE(B, i- 11 Yi- Y2IIE(B)I 

in all elements of the space E (B) y E (&I , w h ere the ~~~t~on Q (8) decreases 
m~otonica~y to zero as 6 +..+ 0. 

2, Formulation of the problem, As usual ) we shall call the function 

z (t) E C2 ([-- T, Tl, E) n C’ ([ - T, Tl, E (B)) fl C (I - T, Tl, E (B2)) 

which turns (1.1) into an identity for - T < f < T and which satisfies the initial 

conditions 2 (0) == a-,, g E (P), i (0) = x0’ E E (B)? the Cauchy solution. 
Let S (r) denote a sphere of radius r > 0 with center at the zero of the space E (J?‘) 
x E (B). There results from CS 1 that for any T > 0 a sphere S Ir (T)] of radius 

r (T) > 0 exisits with initial conditions from which the Cauchy problem for (1, Z ) 
is uniquely solvable, Let us examine the question of nonlocal ~ontinuab~~ty of the so- 
lutions of this equation with initial conditions from a certain fixed spheres (rO) and the 

question of the behavior of those solutions as zt -+ 06 , which belong to this sphere for 

all t > 0 . Such solutions are most important for applications since solutions which 
are sufficiently great in the norm are not generally physically realizable: disruption of 

the system occurs for appropriate l-a&s of t . 

3, Fundamental rtaults. Let us first iatroduce a rrumber of notations and 
concepts. Henceforth e, 2 8, i- ie, is an eigenelement of the operator sheaf,5 (k;O) 
corresponding to the eigenvalue iu*, and h, = hI f i/z!! is a linear functional which 

is the eigenelement of the adjoint operator sheaf 

L” (3L; 0) = 3L21 - ?U4* (O} + I?*2 + c* (0) 

corresponding to the same eigeavalue, As is known,it can be considered that 

(hi, %) = 818 ti k = 1,2) @*I rJ 

where Sjk is the Kronecker delta, Here (u, h) in (3.1) denotes the value of the 
functional n at the element b. Using e, and h, we introduce the functions 

J% 0) = e, cos u,f - es sin a& I& (t) = el sin flOt + es cos a,t 

IJz (1) = h, co.9 crOt - h, sin u& Hz (t) = k, sin a& + & cos sot 

into the ~ons~d~atio~ ) which are needed for exa~nation of the question of the exist - 

ence of 2nl@,- periodic solutions for the inhomog~e~s equation 

2** + A (0) Z’ + IR” + c (0)lz = f (t) (f (t + 2n/o,) Z% f (t)> (3.2) 



A mathematical problem of the theory of elastic stability 483 

with a sufficiently smooth right side. Namely ,( 3.2 ) has periodic solutions if and only if 

m/u0 

ink [f @)I = $ \ (ffk@), f(t))dt = 0 (k = 1, 2) (3.3 ) 

0 

Furthermore, let us define two classes of functions with special properties, 
The first class W consists of real scalar functions w (5, u). By definition, w ,(& 

,U> E Wif 

1’. The function w (I;, p) is analytic in the set of variables for 

I E 1 < Em II P lip < PO (3.4) 

2 “. For E and p satisfying the inequalities (3.4 ), the conditions 

are satisfied. 

The second class X, consists of functions 5 (T; E, p) , periodic in z with period 
2~ / os , with values in E (P) which additionally satisfy the conditions 

1". The functions t (7; 5, CL) are analytic in the set of variables in the metric 

of the space E (R2) for all z and values E and ~1 satisfying the inequalities (3.4 ) . 

2’. For the same &and ~1 the identities 

ml [JJ CT; E, p)l = E, m2 Irz: (a; E, /&)I = 0 

are satisfied. 
Now, let us examine the differential equation 

$ + (1 + c) A (e) 2 + (1 + c)” [B2 + c @)I 2 = (3.5) 

(1 + c)” f (ix, -A- L@ ; 6 l-q 1+-c dt 

which is obtained from (1.1) by using the substitution t = (1 + c) z, where\ c 1 < 1. 
We shall consider (3.5) as an equation in 

c = c (E, u) E w, e = 2c) (E, I-“) E w (3.6) 

x = 5 (.t; E, p) E Xr 

Theo r em 1. There exists a single set of functions (3.6 ) turning (3.5 ) into an 
identity. 

From this proposition there results that to each solution g = E (e, p) of the scalar 

equation 

e = ic) (L P) (3.7 > 

there corresponds a periodic solution 

(3. S ) 

of (1.1) , The natural question arises : are all geometrically distinct periodic solutions 
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of (1.1) exhausted in this manner for each t belonging to some sphere S (rO) of the 
phase space E (B2) x E (B). Let us recall that periodic solutions which are impos- 
sible to obtain from each other by time shifts are called geometrically distinct. 

We shall assume everywhere below that $ (E, 0) + 6. Under this condition and 
for sufficiently small E,, and PC, in the right sides of the inequalities (1.2 ) , solutions 
passing through the ends of a sufficiently small segment [- &I, &,I cannot appear 
for the scalar equation (3.7 ) for arbitrary change in E and CL in the appropriate limits. 

Henceforth, we shall assume that the smallness of the F,,, [to and &, necessary for 

this is conserved. 

Theorem 2. There exists an ro and a eo, p. and & dependent on it such 
that for e and p satisfying the inequalities (1.2), the differential equation (1.1) has as 

many geometrically distinct periodic solutions for each t belonging to S (ro) as (3.8 ) 

has distinct solutions belonging to the interval (0, Eo), 

Theorem 3. The trajectory of each solution of the differential equation (1.1) 
asymptotically approaches either the zero equilibrium state or one of its cycles for all 

t > 0 belonging to S (ro) . 
Let us turn to the question of the Liapunov stability of the periodic solutions con- 

structed earlier. 

Theorem 4, For given F* and [I* let the scalar equation (3.7 ) have the simple 
solution E, E (0, E,). Then the periodic solution J: (t; F*,, ii*) constructed thereby 

according to (3.8 ) is stable (unstable) if 

There remains to explain the behavior of the solutions when the scalar equation 
(3.7 ) has no solutions in the interval (0, &,). 

Theorem 5. For given E+ and II* all the solutions of the differential equation 
(1.1) with initial conditions from the sphere S (r,,) asymptotically approach the zero 
solution if 

and this equation has a solution with initial conditions arbitrarily small with respect to 
the norm, which leave the sphere S (ro) with the lapse of time if the inequality men- 

tioned is replaced by its opposite. 

4. Algorithmic part, Let 

c (ET P) = c2 (p) E” + c4 (p.) g4 + . . . (4.1) 

II; (ET CL) = b, (CL) E” + bs (p) E” t . . . 

5 (T h CL) = EE’, (7) + j2 Ic, (‘t; p) + . . . 

be series expansions of the functions (3.6 ) in powers of E. Substituting them into (3.5 ), 
expanding the left and right sides of the identities obtained in power series in 6 and 
equating coefficients of identical powers of k, we obtain recursion sequences of linear 

inhomogeneous differential equations 
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(4.2) 
[B2 -I- C 691 G (z; P) = (P,, b’; pL), n = Zk, 2k + 1 

qPzk(r; p)= (P2k(% c2(~), *. -9 %k-,(p)9 b,(p), . * *Y b2k-2(p), p) 

(P2k+ltTt; p) = %!ktl(? c2@), ***Y c2k(p), b2@)7 .a* 

., b2k(P.), cl), k = 1, 2... 

Here vskr %%+r are trigonometric polynomials of the variable rwith numbers 
of the harmonics not exceeding 2k and 2k -L 1 , respectively. As it turns out 

ml hk (? p)] = m2 h&k (T; CL)] = 0 

always. The equalities 

uniquely define the coefficients of the first two series in (4.1) . The coefficients of the 
last series in (4.1) are hence defined uniquely as trigonometric solutions of (4.2) satis- 
fying the equalities 

mh_ [Z, (z; p)] = 0 (k = 1, 2; i = 2, 3, . . .) 

Often kz (0) # O in applications. In this case, the scalar equation (3.7 ) cannot 

have more than one solution in the sufficiently small interval (0, E,,) for sufficiently 
small eo and PO If such a solution exists, then it is expanded in the series 

4 = (I1 (p) El” + (1s (IL) E3i’ + * . . 

of odd powers of EI’~. It can hence be considered that j =: ~1 @)a”‘. Then it follows 

from (3.8 ) that 

Let us still note that the parameter p reflects the influence of different nonlinear- 
ities in applications. For instance, the geometric and aerodynamic nonlinearitites in 
the panel flutter problem. If it turns out that ba (0) = 0 for a certain interaction, 
then usually 0, (0) # 0. Itis clear that in this case also thescalar equation (3.7 ) can be 

analyzed completely. 

5, pr 00 f 8, All the propositions formulated have analogs in [ 6 1, in which it has 
been noted that the appropriate foundations are general in nature and applicable to a 

broad class of evolutionary equations. In this connection, we indicate only changes due 

to singularities in the case under consideration. 

In combination, the algorithmic part and Theorem 1 are approximately equivalent 
to the material in [ 9.10 1, where parabolic equations were studied. They were given 
a foundation by the scheme elucidated in [ 6 1, and no new method occurs here. Let US 

note that this scheme is similar to that used in [ 9.10 1. 
Let us proceed to give Theorem 2 a foundation. To do this we introduce the dif - 

ferential equation 
u’ = (2 (8)~ + F, (u; E, p) (5.1) 
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obtained from (1.1) in which the function f (2, z’; E, u) is replaced by fs (2, 2’; 8, p), 

by using the substitution 

u = (Jr, 4, rr = Bx, x2 = x’ 

The Cauchy problem for (5.1) is solvable nonlocally for any initial condition u E 
E (B) X E (B) and the set of its solutions forms a group of nonlinear operators 

u (t, u; E, p) = T (t; E)u + I’ (t, u; e, p) (5.2 1 

where T (t; g) is a group of linear operators of the class (C,) with generating operator 

Q (~1 C 111. The nonlinear member in the right side of (5.2 ) satisfies all the constraints 
formulated in [ 7 1. In particular, the operator 1’ (t, rr; E, p) , as an operator from E (B) 

x E (B) X Rm+’ into JE (B) x E (B) , is continuous in the set of variables, and it 

satisfies the Lipschitz condition with a sufficiently small constant in the space variable, 

and has an order of smallness greater than the first at zero. 
Let us note that the stability spectrum of (1.3 ) agrees with the spectrum of the op- 

erator Q (e). Let er (a) + ie, (e) denote the eigenelement of the operator Q (e) 
corresponding to the eigenvalue h (E), , and let hr (a) -k ih, (a) denote a linear 
functional which is the eigenelement of the adjoint operator Q* (a) and corresponds 
to the eigenvalue 3 (a). They can be selected independently of e, smoothly and such 
that (hk (a), ej (e)) = 8kj, where k, i = 1, 2. These quantities are necessary for the 
phase space E (B) X E (B) of (5.1) to decompose into the direct sum of two subspaces 

C, (E) and C, (e). The former is the linear envelope of el (8) and e2 (E), while 

the latter is given by the equalities (hk (E), u) = 0, where k = 1, 2. We denote their 

corresponding projectors by Pr (E) and J’z (E). We denote the set of elements related 

by the inequality 

P II PI (El u lie >, II Pz (cl u IL (p = const > U) 

by M (P, E) . 
Here II * II ,,_ is some special norm in E (B) :< E (B) which is uniformly equi- 

valent in E to the ordinary norm which is selected as in [ 6 1. There results from the pro- 

perties of the nonlinear group (5.2 > and the results of [ 6 ] that the solutions of (5.1) 
with the initial conditions uEM (p, E) either fall into this set with the lapse of time 
by decreasing in the norm, or appoach the zero solution exponentially. Rotation ( see 
[ 6 ] ) occurs in the very same set M (p, e) . These two facts permit reduction of the 

question of the behavior of solutions of (5.1) to the question of the behavior of iterations 
of the Poincarg operator 

II (U; &, P) = u (tk (u; a, P), u; e, P) (5.3 ) 

defined in the set K (P, e) consisting of u E M (P, e) such that (h, (E),u) > 0, and 
(k, (E), u) = 0. The functional tK = lx (u; E, P) in (5.3) is a continuous solution of 

the equation 

exP r(e) tK sin 6 (8) tK = (h2 (E), T/ (tK, U; E, p)) 

TV (0; E, P) = 2n/o (e) 

Such a solution in the space variable certainly satisfies the Lipschitz condition. 
The subsequent reasoning differs somewhat from that elucidated in [ 6 1, where the 
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,rnonotonicity of the operator (5.3 ) in the sense of the semi-order generated by the cone 
K (p, E), was used. In the case of hyperbolic type equations this fact is not established 

successfully since it is impossible to extract the principal linear part from the nonlinear 
operator (5.3 ) . 

It follows from the results in [ 7 ] that the operator (5.3 ) has a unique invariant 

curve 2 (E, u) in K (P, e) with the following properties: it is given by the equation 
u = qel (E) + v. (q; E, p), where the parameter 11 > 0; the function v0 (q; E, pL) ,con- 

tinuous in the set of variables and with values in C2 (~1 , satisfies the Lipschitz condition 
with respect to ? with a constant NO < I , and has an order of smallness greater than 

the first at zero ; finally, the spacing between IIn (u; E, P) and this curve decreases at 
the rate of a geometric progression as n - 00 , The function CO (rl; e. p) still poss- 

esses a certain smoothness in rl and E [ 7 1. This permits establishment of the monotoni- 
city of the operator (5.3 ) in the elements 1 (e, P) and then the use of the scheme and 
analog to the Lemma 2.19 described in [ 6 ] to complete the proof, 

The proof of Theorem 3 follows from the monotonicity of the operator (5.3 ) in the 

elements I (a, p) and from what has been elucidated in [ 7 1. The proofs of Theorems 
4 and 5 are carried out approximately in the same manner as in [ 6 ] . 

6. A supplement. Let b, (0) # 0. We consider an arbitrary solution 2 (t) 
of (1.1) with initial conditions from the sphere 8 (ro). Then for values of t at which 

the trajectory of the solution J: (t) remains in S (rJ, the formula 

analogous to (4.3 ) , is valid .Here ri (t) is a solution of the equation 

q’ = .q’q - b, (p)q,‘q3, “‘1(O) =rlo>o 

and the constants co and qa depend on the initial conditions of 2 (t). There results 
from Sect. 5 that terms which are either proportional to e or damp exponentially with 

the exponent independently of E, are discarded in the right side of (6.1) . 

7 , c 0 nc lu si on, The method proposed is applicable to nonconservative problems 
of elastic stability theory in which the loss of stability of the equilibrium state occurs 

by oscillations. To confirm the corresponding fact, the spectrum of the linearized pro- 

blem must be analyzed. Afterwards, a certain quantity of stationary inhomogeneous 
equations must be solved. This latter can be done by relying on the Gale&in method, 
for instance. This program of operations is described in detail in [ 123 in which the non- 
linear flutter of an essentially two-dimensional panel is computed numerically and com- 

pared with experimental results published by American authors. The discrepancy from 
experiment did not exceed 8%. 
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